Search results for " line: formation"

showing 3 items of 3 documents

Pressure Shift and Gravitational Red Shift of Balmer Lines in White Dwarfs. Rediscussion

2015

The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of $H_\alpha$ and $H_\beta$ Balmer lines in spectra of DA white dwarfs (WDs), as masking effects in measurements of the gravitational red shift in WDs, have been examined in detail. The results are compared with our earlier ones from before a quarter of a century (Grabowski et al. 1987, hereafter ApJ'87; Madej and Grabowski 1990). In these earlier papers, as a dominant constituent of the Balmer-line-profiles, the standard, symmetrical Stark line profiles, shifted as the whole by PS-effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark-line-profiles (e…

Physicsatomic processes; line: formation; line: profiles; plasmas; white dwarfsmedia_common.quotation_subjectFOS: Physical sciencesBalmer seriesWhite dwarfAstronomy and AstrophysicsAstrophysicsPlasmaAsymmetrySpectral linesymbols.namesakeStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencesymbolsSolar and Stellar Astrophysics (astro-ph.SR)Line (formation)media_commonGravitational redshift
researchProduct

A ionized reflecting skin above the accretion disk of GX 349+2

2009

The broad emission features in the Fe-Kalpha region of X-ray binary spectra represent an invaluable probe to constrain the geometry and the physics of these systems. Several Low Mass X-ray binary systems (LMXBs) containing a neutron star (NS) show broad emission features between 6 and 7 keV and most of them are nowi nterpreted as reflection features from the inner part of an accretion disk in analogy to those observed in the spectra of X-ray binary systems containing a Black Hole candidate. The NS LMXB GX 349+2 was observed by the XMM-Newton satellite which allows, thanks to its high effective area and good spectral resolution between 6 and 7 keV, a detailed spectroscopic study of the Fe-Ka…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsSpectral lineline: identification line: formation stars: individual GX 349+2 X-rays: binaries X-rays: generalBlack holeidentification line: formation stars: individual GX 349+2 X-rays: binaries X-rays: general [line]Neutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceEmission spectrumSpectral resolutionRelativistic quantum chemistryAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsLine (formation)
researchProduct

X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton

2012

The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. We analyse two Chandra observations and one XMM-Newton observation to study the discrete features and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. All spectra cover the e…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral lineidentification line: formation stars: individual: X1822-371 X-rays: binaries X-rays: general [line]Settore FIS/05 - Astronomia E Astrofisica0103 physical sciencesOptical depth (astrophysics)line: identification line: formation stars: individual: X1822-371 X-rays: binaries X-rays: generalEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLine (formation)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsLine-of-sight010308 nuclear & particles physicsResonanceAstronomy and AstrophysicsRadiusCoronaSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct